Abstract
The fashion industry is currently confronted with significant economic and environmental challenges, necessitating the exploration of novel business models. Among the promising approaches is small series production on demand, though this poses considerable complexities in the highly competitive sector. Traditional supplier selection and production planning processes, known for their lengthy and intricate nature, must be replaced with more dynamic and effective decision-making procedures. To tackle this problem, GA-TOPSIS hybrid model is proposed as the methodology. The model integrates Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) evaluation into the fitness function of Genetic Algorithm (GA) to comprehensively consider both qualitative and quantitative criteria for supplier selection. Simultaneously, GA efficiently optimizes the order sequence for production planning. The model's efficacy is demonstrated through implementation on real orders, showcasing its ability to handle diverse evaluation criteria and support supplier selection in different scenarios. Moreover, the proposed model is employed to compute the Pareto front, which provides optimal sets of solutions for the given objective criteria. This allows for an effective demand-driven strategy, particularly relevant for fashion retailers to select supplier and order planning optimization decisions in dynamic and multi-criteria context. Overall, GA-TOPSIS hybrid model offers an innovative and efficient decision support system for fashion retailers to adapt to changing demands and achieve effective supplier selection and production planning optimization. The model's incorporation of both qualitative and quantitative criteria in a dynamic environment contributes to its originality and potential for addressing the complexities of the fashion industry's supply chain challenges
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.