Abstract
In the liquid state, glass-forming Ni59.5Nb40.5 and Ni60Nb34.8Sn5.2 alloys exhibit an extraordinarily high packing fraction. The self-correlation functions measured using quasielastic neutron scattering clearly show the slowing down of microscopic dynamics with an increase in packing fraction. The self-diffusivity in liquid Ni60Nb34.8Sn5.2 decreases by about 2 orders of magnitude within a temperature range of 360 K. For these highly fragile systems, the critical packing fraction obtained form the analysis of incoherent data is in excellent agreement with the prediction made by mode-coupling theory. Our results provide the first experimentally observed value for the critical packing fraction in glass-forming metallic liquids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.