Abstract

In this study, the design, optimization and dynamic modelling of a milk pasteurization unit have been developed, using the pseudo-component approach for describing milk properties. The fluid has been regarded as a mixture of five major categories, namely water, fats, proteins, carbohydrates, and minerals. Exploiting the optimal pasteurizer configuration, selected based on the total annualized cost, a dynamic model of the process has been also derived. The simulation of the system is then used as a virtual plant to develop a nonlinear model predictive control (NMPC) designed for rejecting the more important disturbances that can enter the system. The predicted trajectories have been calculated with a simplified version of the dynamic model, obtained by neglecting parameters temperature dependence. The NMPC performance has been compared with a PI controller in terms of set-point tracking and disturbance rejection. Similar results have been obtained when using the different control algorithms for the output responses, but the NMPC showed better behaviour of the manipulated variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.