Abstract

This paper presents a numerical study of the packing of nonspherical particles by the use of the discrete element method. The shapes considered are oblate and prolate spheroids, with the aspect ratio varying from 0.1 to 7.0. It is shown that the predicted relationship between packing fraction and aspect ratio is consistent with those reported in the literature. Ellipsoids can pack more densely than spheres. The maximum packing fraction occurs at an aspect ratio of 0.6 for oblate spheroids, and 1.80 for prolate spheroids. The packing characteristics with aspect ratio are further analyzed in terms of structural parameters such as coordination number and radial distribution function. It is shown that ellipsoids with small or large aspect ratios tend to give a locally ordered structure. The results demonstrate that DEM provides a useful method to investigate the packing dynamics of ellipsoidal particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.