Abstract

Hypoxia hampers ATP production and threatens cell survival. Since cellular energetics tightly controls cell responses and fate, ATP levels and dynamics are of utmost importance. An integrated mathematical model of ATP synthesis by the mitochondrial oxidative phosphorylation/electron transfer chain system has been recently published (Beard, PLoS Comput Biol 1(4):e36, 2005). This model was validated under static conditions. To evaluate its performance under dynamical situations, we implemented and simulated it (Simulink), The Mathworks). Inner membrane potential (DeltaPsi) and [NADH] (feeding the electron transfer chain) were used as indicators of mitochondrial function. Root mean squared error (rmse) was used to compare simulations and experiments (isolated cardiac mitochondria, Bose et al. J Biol Chem 278(40):39155-39165, 2003). Steady-state experimental data were reproduced within 2-6%. Model dynamics were evaluated under: (i) baseline, (ii) activation of NADH production, (iii) addition of ADP, (iv) addition of inorganic phosphate, (v) oxygen exhaustion. In all phases, except the last one, DeltaPsi and [NADH] as well as oxygen consumption, were reproduced (within 10, 7 and 12%, respectively). Under anoxia, simulated DeltaPsi markedly depolarized (no change in experiments). In conclusion, the model reproduces dynamic data as long as oxygen is present. Anticipated improvement by the inclusion of ATP consumption and explicit Krebs cycle are under evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.