Abstract

A three-dimensional model of the body was used to simulate two different motor tasks: vertical jumping and normal walking on level ground. The pattern of muscle excitations, body motions, and ground-reaction forces for each task were calculated using dynamic optimization theory. For jumping, the performance criterion was to maximize the height reached by the center of mass of the body; for walking, the measure of performance was metabolic energy consumed per meter walked. Quantitative comparisons of the simulation results with experimental data obtained from people indicate that the model reproduces the salient features of maximum-height jumping and normal walking on the level. Analyses of the model solutions will allow detailed explanations to be given about the actions of specific muscles during each of these tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.