Abstract

A simulation program for transient analysis of the startup procedure of heavy duty gas turbines for power generation has been constructed. Unsteady one-dimensional conservation equations are employed and equation sets are solved numerically using a fully implicit method. A modified stage-stacking method has been adopted to estimate the operation of the compressor. Compressor stages are grouped into three categories (front, middle, rear), to which three different stage characteristic curves are applied in order to consider the different low-speed operating characteristics. Representative startup sequences were adopted. The dynamic behavior of a representative heavy duty gas turbine was simulated for a full startup procedure from zero to full speed. Simulated results matched the field data and confirmed unique characteristics such as the self-sustaining and the possibility of rear-stage choking at low speeds. Effects of the estimated schedules on the startup characteristics were also investigated. Special attention was paid to the effects of modulating the variable inlet guide vane on startup characteristics, which play a key role in the stable operation of gas turbines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.