Abstract

SUMMARYThis paper presents a meshless method for the modeling of shell‐type structures in fast dynamics. The model is based on the Mindlin–Reissner theory and takes into account material and geometric nonlinearities. The phenomena that occur prior to rupture are dealt with using damage laws, while the rupture itself is represented through the introduction of sharp discontinuities. The method does not represent cracks explicitly, which makes the treatment of multicracking easier. The time discretization is carried out in the framework of explicit dynamics, and the spatial discretization is handled through the smoothed particles hydrodynamics method and the use of moving least square functions. The capabilities of the method are demonstrated using cracking, puncturing and fragmentation examples. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.