Abstract

A dynamic model of a single-effect absorption refrigeration cycle with realistic thermodynamics has been developed. The thermodynamic properties are obtained from the Redlich–Kwong equation of state for ammonia/water as the refrigerant/absorbent mixture. The governing ordinary differential equations are derived from the mass, momentum and energy balances for the different components of the system. Lumped parameters are assumed, so that at any instant of time the generator, condenser, evaporator and absorber are each characterized by a single temperature, pressure and concentration. Friction factors are used to calculate pressure drops in the pipes. The transient response of the cycle to a step change in pressure rise across the pump is determined from numerical solutions of the governing equations. The dynamic responses of the mass flow rates, heat rates and the coefficient of performance are shown. The rise time seems to be about two loop circulation times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.