Abstract

Tensegrity mechanisms have the advantage of being relatively lightweight due to. their extensive use of cables and springs. As such, they have the potential of being an attractive alternative to conventional mechanisms in certain application environments. However, the presence of unconstrained degrees of freedom in tensegrity mechanisms leads to a dynamic behaviour that cannot be directly controlled with the actuators. In this work, the dynamic model of a novel spatial three-degree-of-freedom (3-DOF) tensegrity mechanism is developed using the Lagrangian formulation. The resulting equations of motion are then solved to simulate the mechanism's motion between equilibrium configurations. Since the mechanism is subjected to holonomic nonlinear geometrical constraints, these must be considered during the solution of its forward dynamic problem. It is seen that the use of damping in the springs is not very efficient in dissipating the mechanism's energy during motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call