Abstract

Dynamic modeling of flow process inside a pressure regulating and shut-off valve has been investigated using a computational fluid dynamic approach. The valve is designed to reduce high inlet pressure to a lower level of outlet pressure which remains almost constant. With the change of inlet pressure, the change in position of the spool inside the valve was calculated using a force balance approach. The Navier–Stokes equation along with appropriate turbulent closure has been solved for this purpose in the compressible flow regime using ANSYS-FLUENT software with special functions developed for calculation of flow force. The code could predict the spool movement and the final spool position when the spool position is deviated from equilibrium. The final spool position and time required to reach equilibrium, besides the flow parameters, also depends on the value of friction coefficient between spool and the valve-body. Higher values of friction coefficient between the spool and the vale body is found to be associated with faster stability of the spool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.