Abstract

For studying the dynamic performance of subsea umbilical cable laying system and achieving the goal of cable tension and laying speed control, the rigid finite element method is used to discrete and transform the system into a rigid-flexible coupling multi-body system which consists of rigid elements and spring-damping elements. The mathematical model of subsea umbilical cable laying system kinematic chain is presented with the second order Lagrange equation in the joint coordinate system, and dynamic modeling and simulation is performed with ADAMS. The dynamic analysis is conducted assuming the following three statuses: ideal laying, practical laying under wave disturbance, and practical laying with tension compensation. Results show that motion disturbances of the laying budge under sea waves, especially with heaving and pitching, will cause relatively serious fluctuations in cable tension and laying speed. Tension compensation, i.e., active back tension torque control can restrict continuous tension increasing or decreasing effectively and rapidly, thus avoiding cable breach or buckling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call