Abstract

This work deals with the dynamics and control of a high-purity batch distillation column with chemical reaction. A heterogeneous esterification reaction between the acetic acid and butanol takes place to produce butyl acetate. The process model is formulated considering variable liquid holdup, UNIQUAC model for thermodynamic property predictions, nonlinear Francis weir formula for tray hydraulics, pseudohomogeneous model to represent the reaction kinetics and rigorous energy balance. A structured and simple iterative approach is devised to compute the vapor flows with the fast convergence, under the rigorous energy balance. The representative column is treated with a distillate policy based on which, the lightest product, water is removed as distillate at the starting of production phase. As a consequence, the column gets progressively richer with the main product, butyl acetate. In addition, almost complete conversion of the limiting reactant is achieved. In order to maintain the product purity at the top, a nonlinear generic model controller (GMC) in two different forms has been proposed. Finally, a comparative closed-loop performance is addressed. It is shown that the control scheme, along with the effective distillate strategy, leads to almost complete conversion of ingredients and high-purity products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.