Abstract
The force states of driving wheels are different when the self-propelled pipeline crawler moves in the pipeline, so it is difficult to carry out accurate theoretical analysis and calculation on the force and output torque values of each driving wheel in horizontal, climbing and turning conditions of the crawler. Due to the complex mechanical properties of pipeline sealing and the limitation of visualization, it takes a long period and high cost to develop the robot in pipeline by experimental means. With the gradual application of virtual simulation means, the complicated dynamic analysis and solution process in the past has become relatively easy. In this paper, Solid works is used to establish a simplified model of the crawler, and ADAMS is used to analyze and simulate the dynamics of the crawler. The force of the multi-wheel driven pipeline crawler is given under the condition of horizontal, climbing 35° and turning, which provides the necessary analysis method and theoretical basis for the design optimization and improvement. Finally, the horizontal, climbing and bending motion performance of the crawler is verified by comprehensive pipeline experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.