Abstract

Cellular protein turnover-the net result of protein synthesis and degradation-is crucial to maintain protein homeostasis and cellular function under steady-state conditions and to enable cells to remodel their proteomes upon a perturbation. In brain cells, proteins are continuously turned over at different rates depending on various factors including cell type, subcellular localization, cellular environment, and neuronal activity. Here we describe a workflow for the analysis of protein synthesis, degradation, and turnover in primary cultured rat neurons and glia using dynamic/pulsed SILAC and mass spectrometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call