Abstract
A hypergraph is a set $V$ of vertices and a set of nonempty subsets of $V$ , called hyperedges. Unlike graphs, hypergraphs can capture higher-order interactions in social and communication networks that go beyond a simple union of pairwise relationships. In this paper, we consider the shortest path problem in hypergraphs. We develop two algorithms for finding and maintaining the shortest hyperpaths in a dynamic network with both weight and topological changes. These two algorithms are the first to address the fully dynamic shortest path problem in a general hypergraph. They complement each other by partitioning the application space based on the nature of the change dynamics and the type of the hypergraph. We analyze the time complexity of the proposed algorithms and perform simulation experiments for random geometric hypergraphs, energy efficient routing in multichannel multiradio networks, and the Enron email data set. The experiment with the Enron email data set illustrates the application of the proposed algorithms in social networks for identifying the most important actor and the latent social relationship based on the closeness centrality metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.