Abstract

To realize mobile virtual reality (VR) group gaming services which are currently hampered by the prohibitive bandwidth and the stringent delay requirements, we investigate the problem of provisioning such services using the emerging mobile edge cloudlet (MEC) networks with a distributed content rendering architecture. The underlying dynamic rendering-module placement problem requires to optimize the service’s operational cost and the users’ end-to-end performance, involving multiple intertwined conflicting system objectives that are discrete, nonconvex, and higher degree polynomial functions with coupled decisions and arbitrary user dynamics over time. We solve this online placement problem by leveraging model predictive control (MPC) and overcoming the aforementioned challenges over each prediction window. We explore the connection between the placement problem and the minimal <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula> - <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> cut problem in graph theory and solve the former via solving a series of instances of the latter. We formally prove the performance guarantee of our approach. We also conduct extensive trace-driven evaluations and demonstrate the superior practical performance of our MPC-based approach compared to the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">de facto</i> practices and the state-of-the-art alternatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call