Abstract

With the advent of Software Defined Network (SDN) and Network Functions Virtualization (NFV), network operators can offer Service Function Chain (SFC) flexibly to accommodate the diverse network function (NF) requirements of their users. However, deploying SFCs efficiently on the underlying network in response to dynamic SFC requests poses significant challenges and complexities. This paper proposes a dynamic SFC deployment and readjustment method based on deep Q network (DQN) and M Shortest Path Algorithm (MQDR) to address this problem. We develop a model of the dynamic deployment and readjustment of the SFC problem on the basis of the NFV/SFC network to maximize the request acceptance rate. We transform the problem into a Markov Decision Process (MDP) and further apply Reinforcement Learning (RL) to achieve this goal. In our proposed method (MQDR), we employ two agents that dynamically deploy and readjust SFCs collaboratively to enhance the service request acceptance rate. We reduce the action space for dynamic deployment by applying the M Shortest Path Algorithm (MSPA) and decrease the action space for readjustment from two dimensions to one. By reducing the action space, we decrease the training difficulty and improve the actual training effect of our proposed algorithm. The simulation experiments show that MDQR improves the request acceptance rate by approximately 25% compared with the original DQN algorithm and 9.3% compared with the Load Balancing Shortest Path (LBSP) algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.