Abstract
Abstract Multi-model prediction ensembles show significant ability to improve forecasts. Nevertheless, the set of models in an ensemble is not always optimal. This work proposes a procedure that allows to select dynamically ensemble members for each forecast. Proposed procedure was evaluated for the task of the water level forecasting in the Baltic See. The regression-based estimation of ensemble forecasts errors was used to implement the selection procedure. Improvement of the forecast quality in terms of mean forecast RMS error and mean forecast skill score are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.