Abstract

This work presents a literature review of multiple classifier systems based on the dynamic selection of classifiers. First, it briefly reviews some basic concepts and definitions related to such a classification approach and then it presents the state of the art organized according to a proposed taxonomy. In addition, a two-step analysis is applied to the results of the main methods reported in the literature, considering different classification problems. The first step is based on statistical analyses of the significance of these results. The idea is to figure out the problems for which a significant contribution can be observed in terms of classification performance by using a dynamic selection approach. The second step, based on data complexity measures, is used to investigate whether or not a relation exists between the possible performance contribution and the complexity of the classification problem. From this comprehensive study, we observed that, for some classification problems, the performance contribution of the dynamic selection approach is statistically significant when compared to that of a single-based classifier. In addition, we found evidence of a relation between the observed performance contribution and the complexity of the classification problem. These observations allow us to suggest, from the classification problem complexity, that further work should be done to predict whether or not to use a dynamic selection approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.