Abstract

Radio access network (RAN) slicing is a key technology that enables 5G network to support heterogeneous requirements of generic services, namely ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB). In this paper, we propose a two time-scales RAN slicing mechanism to optimize the performance of URLLC and eMBB services. In a large time-scale, an SDN controller allocates radio resources to gNodeBs according to the requirements of the eMBB and URLLC services. In a short time-scale, each gNodeB allocates its available resources to its end-users and requests, if needed, additional resources from adjacent gNodeBs. We formulate this problem as a non-linear binary program and prove its NP-hardness. Next, for each time-scale, we model the problem as a Markov decision process (MDP), where the large-time scale is modeled as a single agent MDP whereas the shorter time-scale is modeled as a multi-agent MDP. We leverage the exponential-weight algorithm for exploration and exploitation (EXP3) to solve the single-agent MDP of the large time-scale MDP and the multi-agent deep Q-learning (DQL) algorithm to solve the multi-agent MDP of the short time-scale resource allocation. Extensive simulations show that our approach is efficient under different network parameters configuration and it outperforms recent benchmark solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.