Abstract

Abstract In this paper we analyze the nonlinear dynamic behavior of an internal exhaust gas recirculation system based on the mean-value model of an experimental engine equipped with a camshaft phaser. We develop a dynamic camshaft timing schedule that regulates the internal exhaust gas recirculation system while maintaining transient engine torque response similar to an engine with zero exhaust gas recirculation. The dynamic schedule consists of a steady-state map of the camshaft timing for optimum exhaust gas recirculation based on throttle position and engine speed, and a first order lag that regulates the transition of the camshaft timing to the optimum point. A scheme for adjusting the time constant of the first order lag depending on engine speed and throttle position is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.