Abstract
We consider a dynamic control problem for a GI/GI/1+GI queue with multiclass customers. The customer classes are distinguished by their interarrival time, service time, and abandonment time distributions. There is a cost c k >0 for every class k?{1,2,?,N} customer that abandons the queue before receiving service. The objective is to minimize average cost by dynamically choosing which customer class the server should next serve each time the server becomes available (and there are waiting customers from at least two classes). It is not possible to solve this control problem exactly, and so we formulate an approximating Brownian control problem. The Brownian control problem incorporates the entire abandonment distribution of each customer class. We solve the Brownian control problem under the assumption that the abandonment distribution for each customer class has an increasing failure rate. We then interpret the solution to the Brownian control problem as a control for the original dynamic scheduling problem. Finally, we perform a simulation study to demonstrate the effectiveness of our proposed control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.