Abstract

This paper addresses the problem of minimizing the scheduling length (make-span) of a batch of jobs with different arrival times. A job is described by a direct acyclic graph (DAG) of parallel tasks. The paper proposes a dynamic scheduling method that adapts the schedule when new jobs are submitted and that may change the processors assigned to a job during its execution. The scheduling method is divided into a scheduling strategy and a scheduling algorithm. We also propose an adaptation of the Heterogeneous Earliest-Finish-Time (HEFT) algorithm, called here P-HEFT, to handle parallel tasks in heterogeneous clusters with good efficiency without compromising the makespan. The results of a comparison of this algorithm with another DAG scheduler using a simulation of several machine configurations and job types shows that P-HEFT gives a shorter makespan for a single DAG but scores worse for multiple DAGs. Finally, the results of the dynamic scheduling of a batch of jobs using the proposed scheduler method showed significant improvements for more heavily loaded machines when compared to the alternative resource reservation approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.