Abstract

The Veterans Health Administration (VHA) is plagued by abnormally high no-show and cancellation rates that reduce the productivity and efficiency of its medical outpatient clinics. We address this issue by developing a dynamic scheduling system that utilizes mobile computing via geo-location data to estimate the likelihood of a patient arriving on time for a scheduled appointment. These likelihoods are used to update the clinic's schedule in real time. When a patient's arrival probability falls below a given threshold, the patient's appointment is canceled. This appointment is immediately reassigned to another patient drawn from a pool of patients who are actively seeking an appointment. The replacement patients are prioritized using their arrival probability. Real-world data were not available for this study, so synthetic patient data were generated to test the feasibility of the design. The method for predicting the arrival probability was verified on a real set of taxicab data. This study demonstrates that dynamic scheduling using geo-location data can reduce the number of unused appointments with minimal risk of double booking resulting from incorrect predictions. We acknowledge that there could be privacy concerns with regards to government possession of one's location and offer strategies for alleviating these concerns in our conclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call