Abstract
We have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scattering, x-ray photon correlation spectroscopy, and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically determined gel temperature, T_{gel}, was characterized via the slowdown of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT=T_{quench}-T_{gel}), wave vector, and formation time t_{f}. We find the wave-vector-dependent dynamics, microstructure, and rheology at a particular ΔT and t_{f} map to those at other ΔTs and t_{f}s via an effective scaling temperature, T_{s}. A single T_{s} applies to a broad range of ΔT and t_{f} but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than expected from the attraction strength between colloids. We interpret this strong temperature dependence in terms of cooperative bonding required to form stable gels via energetically favored, local structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.