Abstract
The INAD scaffold organizes a multiprotein complex that is essential for proper visual signaling in Drosophila photoreceptor cells. Here we show that one of the INAD PDZ domains (PDZ5) exists in a redox-dependent equilibrium between two conformations--a reduced form that is similar to the structure of other PDZ domains, and an oxidized form in which the ligand-binding site is distorted through formation of a strong intramolecular disulfide bond. We demonstrate transient light-dependent formation of this disulfide bond in vivo and find that transgenic flies expressing a mutant INAD in which PDZ5 is locked in the reduced state display severe defects in termination of visual responses and visually mediated reflex behavior. These studies demonstrate a conformational switch mechanism for PDZ domain function and suggest that INAD behaves more like a dynamic machine rather than a passive scaffold, regulating signal transduction at the millisecond timescale through cycles of conformational change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.