Abstract

Fine-scale characterization and monitoring of spatiotemporal processes are crucial for high-performance quality control of manufacturing processes, such as ultrasonic metal welding and high-precision machining. However, it is generally expensive to acquire high-resolution spatiotemporal data in manufacturing due to the high cost of the three-dimensional (3D) measurement system or the time-consuming measurement process. In this paper, we develop a novel dynamic sampling design algorithm to cost-effectively characterize spatiotemporal processes in manufacturing. A spatiotemporal state-space model and Kalman filter are used to predictively determine the measurement locations using a criterion considering both the prediction performance and the measurement cost. The determination of measurement locations is formulated as a binary integer programming problem, and genetic algorithm (GA) is applied for searching the optimal design. In addition, a new test statistic is proposed to monitor and update the surface progression rate. Both simulated and real-world spatiotemporal data are used to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.