Abstract

AbstractThe 2021 MW 7.4 Maduo event occurred within the Bayan Har block in eastern Tibet, which provides an opportunity to investigate the stress conditions and rheology of faults within the block. Here, we perform dynamic rupture simulations based on the finite element method to explore the physical conditions underlying this earthquake and the factors that controlled the rupture process. We construct the model with a nonplanar fault inferred from the Interferometric Synthetic Aperture Radar (InSAR) data and aftershocks sequence relocation. Our dynamic model is controlled by slip‐weakening friction law with initial stress on fault resolved from a uniform regional stress field. The preferred model produces an average slip of ∼2.2 m with a maximum slip of ∼4.0 m. There are three asperities distributed along the strike, which have captured the main features of the Maduo event. The simulation results are consistent with the static GPS coseismic surface displacements, InSAR data, and displacement waveforms recorded by high‐rate GNSS stations. By comparing the results with the planar fault model and rotated stress fields, we find that the fault geometry and regional stress field are the primary factors that control the rupture process of the event. Moreover, we infer that the unfavorable orientation and fault bend lead to minor slips on the branch fault. Furthermore, we investigate the potential mechanisms of supershear rupture on the eastern fault segment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.