Abstract
Recent work by several groups has established that MhuD, IsdG, and IsdI are non-canonical heme oxygenases that induce significant out-of-plane ruffling distortions of their heme substrates enroute to mycobilin or staphylobilin formation. However, clear explanations for the observations of "nested" S = ½ VTVH MCD saturation magnetization curves at cryogenic temperatures, and exchange broadened (1)H NMR resonances at physiologically-relevant temperatures have remained elusive. Here, MCD and NMR data have been acquired for F23A and F23W MhuD-heme-CN, in addition to MCD data for IsdI-heme-CN, in order to complete assembly of a library of spectroscopic data for cyanide-inhibited ferric heme with a wide range of ruffling deformations. The spectroscopic data were used to evaluate a number of computational models for cyanide-inhibited ferric heme, which ultimately led to the development of an accurate NEVPT2/CASSCF model. The resulting model has a shallow, double-well potential along the porphyrin ruffling coordinate, which provides clear explanations for the unusual MCD and NMR data. The shallow, double-well potential also implies that MhuD-, IsdG-, and IsdI-bound heme is dynamic, and the functional implications of these dynamics are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.