Abstract

We propose a novel genetic algorithm for solving the dynamic routing and wavelength assignment (DRWA) problem in wavelength-routed optical networks. The algorithm not only obtains low call blocking probability, but it also employs a very short computation time. Moreover, it is capable of providing fairness among connections, that is, to offer approximately the same quality of service (in terms of blocking probability) for all source-destination node pairs. Since requirements on optical network availability are highly severe, we also propose an extension of the algorithm to provide fault-tolerance capability at the optical layer. It is achieved by means of protection, where each optical connection request is provided with a pair of lightpaths (a primary and a backup lightpath). Again, the genetic algorithm proves to be highly efficient, in this case, at performing routing and wavelength assignment of pairs of lightpaths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.