Abstract

This paper investigates the dynamic ridesharing with the variable-ratio charging-compensation scheme (VCS) in morning commute, with the continuous-time point-queue model applied to a single bottleneck. The optimal VCS without imposing road pricing when the ridesharing platform minimizes the disutility or maximizes its profit is analyzed. It is found that the user equilibrium coincides with the system optimum when the platform minimizes the system disutility with VCS, and the corresponding platform's profit is negative with high travel demand. Considering this, the optimal VCS when the platform minimizes the system disutility with zero profit is examined. Moreover, to ensure ridesharing participants commute with no queue, they need to depart at the two tails of the departure time window. Under that case, the optimal VCS are investigated with desirable objectives of the ridesharing platform. The analytical results indicate there should be fewer commuters involved in ridesharing when the platform maximizes its profit compared to that when the platform minimizes the system disutility with zero profit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.