Abstract

Smartphone technology enables dynamic ride-sharing systems that bring together people with similar itineraries and time schedules to share rides on short-notice. This paper considers the problem of matching drivers and riders in this dynamic setting. We develop optimization-based approaches that aim at minimizing the total system-wide vehicle miles incurred by system users, and their individual travel costs. To assess the merits of our methods we present a simulation study based on 2008 travel demand data from metropolitan Atlanta. The simulation results indicate that the use of sophisticated optimization methods instead of simple greedy matching rules substantially improve the performance of ride-sharing systems. Furthermore, even with relatively low participation rates, it appears that sustainable populations of dynamic ride-sharing participants may be possible even in relatively sprawling urban areas with many employment centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.