Abstract

The viscoelastic behaviour of PA12/SEBS-g-MA blends was studied. Time sweep, amplitude sweep, and frequency sweep tests were analysed by the use of parallel-plate rheometer. Time sweep test shows time-independent viscoelastic behaviour of the polymer and blends during the entire duration of test. The critical shear strain was higher for PA12 as compared to that of SEBS-g-MA and the blends in amplitude sweep test. However, the plateau modulus was higher for SEBS-g-MA as compared to PA12. The complex viscosity, dynamic storage, and loss moduli of PA12 increased with the addition of SEBS-g-MA as a consequence of phase interaction between them. The influence of phase morphology of blend composition on their rheological properties was also examined. The blend showed a transformation from liquid-like to solid-like behaviour. The decrease in viscosity for PA12 and blends was observed with increasing temperature. The van Gurp plots was successfully used to validate time–temperature superposition principle (TTS) for PA12, SEBS-g-MA and blend compositions. PA12 holds TTS with a horizontal shift factor that fits Arrhenius equation. Whereas TTS fails for SEBS-g-MA and the blends studied because of different temperature-sensitive response and microstructural changes of melt during shear application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call