Abstract

A truck–pavement–ground coupling model was established to study the dynamic responses of a saturated poroelastic half-space generated by a moving heavy truck on the uneven pavement. The ground was simulated as a fully saturated poroelastic half-space governed by Biot’s theory. The overlying pavement was simplified as a Kirchhoff thin plate. With the assumption of a sinusoidal pavement surface, the dynamic wheel–pavement force was obtained through a linear Hertizian contact model. The numerical results showed that this dynamic load could make considerable contributions to the stress and excess pore water pressure responses in the ground. Furthermore, the effective stress path of the soil unit beneath the pavement caused by the moving truck was firstly calculated and presented. It was found that the differences between the total stress path and the effective stress path became significant as the truck speed increased, thus the effective stress path was more suitable than total stress path to reflect the stress history of soil elements in the saturated ground during the passage of high-speed traffics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call