Abstract
AbstractA single pile embedded in a layered poroelastic half‐space subjected to a harmonic lateral load is investigated in this study. Based on Biot's theory, the frequency domain fundamental solution for a horizontal circular patch load applied in the layered poroelastic half‐space is derived via the transmission and reflection matrices method. Utilizing Muki and Sternberg's method, the second kind of Fredholm integral equation describing the dynamic interaction between the layered half‐space and the pile subjected to a top harmonic lateral load is constructed. The proposed methodology is validated by comparing results of this paper with some existing results. Numerical results show that for a two‐layered half‐space, the thickness of the upper softer layer has pronounced influences on the dynamic response of the pile and the half‐space. For a three‐layered half‐space, the presence of a softer middle layer in the layered half‐space will enhance the compliance for the pile significantly, while a stiffer middle layer will diminish the dynamic compliance of the pile considerably. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.