Abstract
ABSTRACTThe polygonal wear around the wheel circumference could pose highly adverse influences on the wheel/rail interactions and thereby the performance of the vehicle system. In this study, the effects of wheel polygonalisation on the dynamic responses of a high-speed rail vehicle are investigated through development and simulations of a comprehensive coupled vehicle/track dynamic model. The model integrates flexible slab track, wheelsets and axle boxes subsystem models so as to account for elastic deformations caused by impact loads induced by the wheel polygonalisation. A field-test programme was undertaken to acquire the polygonal wear profile and axle box acceleration response of a high-speed train, and the data are used to demonstrate the validity of the coupled vehicle/track system model. Subsequently, the effects of wheel polygonalisation are evaluated in terms of wheel/rail impact forces, axle box vertical acceleration and dynamic stress developed in the axle considering different amplitudes and harmonic orders of the polygonal wear. The results suggest that the high-order wheel polygonalisation can give rise to high-frequency impact loads at the wheel/rail interface, and excite some of the vibration modes of the wheelset and the axle box leading to high-magnitude axle box acceleration and dynamic stress in the wheelset axle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.