Abstract

In this study, an innovative modeling approach is put forward to research the effect of eccentricity on the nonlinear dynamical behaviors of geared-bearing system. This refined model contains the rigid body of the rotor-bearing system and separated gear teeth which are considered as individual bodies elastically attached to the gear hub with revolute joints. The internal and external excitations of the proposed model include torsional joint stiffness, roll bearing forces, friction between gear pair, gear eccentricity, and so on. The systematic procedure for the calculation of torsional joint stiffness, bearing forces and friction coefficient considering elastohydrodynamic is also conducted. After that, the influence of eccentricity on nonlinear dynamic characteristics of the geared transmission system is analyzed. To avoid the system moving in the unstable motion state, a dry friction damper controller is designed to control the nonlinear behaviors simulated on the basis of above model. The linear feedback and periodic excitation non-feedback control strategies are, respectively, selected to design the actuator. It is indicated that undesirable behaviors of the geared transmission system can be avoided effectively by applying the proposed control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call