Abstract
A 3D finite element analysis model of cracked asphalt pavement is established by the FEM software ABAQUS. Based on dynamics mechanics, fracture mechanics and finite element theory, this paper studies the influence of various vehicle speeds, crack location, crack depth, damping ratio etc. on the dynamic response. The results show that the surface deflection, the maximum tensile strain at the bottom of the asphalt layer, and the maximum shear stress of the asphalt layer decreased with the increase in vehicle velocity when there is no crack in the pavement. No matter where the transverse position of the crack is the stress intensity factors increase with the increase in crack depth and decrease exponentially with the increase in longitudinal distance between the vehicle center and the crack. In the case of the crack locating in the center of wheel clearance, the surface deflection increases with the crack depth increasing. But if the crack is at the edge of the wheel track, there will be a critical vehicle velocity where the surface deflection is smaller than the asphalt pavement without crack if the vehicle velocity is above it. The maximum tensile strain at the bottom of the asphalt layer and the maximum shear stress of the asphalt layer are also smaller than the asphalt pavement without crack. The maximum tensile strain and the maximum shear stress decrease with the damping ratio increasing. So the increase in damping ratio can help to alleviate the propagation of cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.