Abstract
In this article, an analytical-numerical approach is presented in order to determine the dynamic response of thin plates resting on multiple elastic point supports with time-varying stiffness. The proposed method is essentially based on transforming a familiar governing partial differential equation into a new solvable system of linear ordinary differential equations. When dealing with time-invariant stiffness, the solution of this system of equations leads to a symmetric matrix, whose eigenvalues determine the natural frequencies of the point-supported plate. Moreover, this method proves to be applicable for any plate configuration with any type of boundary condition. The results, where possible, are verified upon comparison with available values in the literature, and excellent agreement is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.