Abstract

Ca2+-dependent conserved-region 2 (C2) domains target their host signaling proteins to anionic membranes. The Ca2+-binding event is a prerequisite for membrane association. Here, we investigate multiscale metal-ion-dependent dynamics of the C2 domain of protein kinase Cα (C2α) using NMR spectroscopy. Interactions with metal ions attenuate microsecond-timescale motions of the loop regions, indicating that preorganization of the metal-binding loops occurs before membrane insertion. Binding of a full complement of Ca2+ ions has a profound effect on the millisecond-timescale dynamics of the N- and C-terminal regions of C2α. We propose that Ca2+ binding allosterically destabilizes the terminal regions of C2α and thereby facilitates the conformational rearrangement necessary for full membrane insertion and activation of protein kinase Cα.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.