Abstract

Steel–timber composite beams are a relatively new type of composite structure. They have many important advantages, owing to which they may be considered a sustainable solution. Their connectors may be demountable, which makes it possible to separate steel girders from LVL panels at the end of their service life. After disassembly, the structural elements can be recycled. One of their advantages is that they are lighter than steel–concrete composite beams. However, this may result in the poor performance of floors with steel–timber composite elements subjected to dynamic loadings. For this reason, the dynamic characteristics of floors should be investigated to verify the serviceability limit state of human-induced vibrations. In this study, the dynamic response of the three steel–timber composite beams with varying screw spacing was captured and used to validate their numerical models. The frequencies obtained from the numerical analyses correspond to the experimental results. A very high agreement between the vibration mode shapes was obtained because the MAC index values were close to 1. The validated numerical model of a single steel–timber beam may be used in future studies to create a complex numerical model of a steel–timber composite floor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call