Abstract
Numerical simulations are performed within the time domain to investigate the dynamic behaviors of an SPAR-type FOWT under wave group conditions. Towards this goal, the OC3 Hywind SPAR-type FOWT is adopted, and a JONSWAP (Joint North Sea Wave Project)-based wave group is generated by the envelope amplitude approach. The FOWT motion under wave group conditions, as well as the aerodynamic, hydrodynamic, and mooring performances, is simulated by our established in-house code. The rotating blades are modelled by the blade element momentum theory. The wave-body interaction effect is calculated by the three-dimensional potential theory. The mooring dynamics are also taken into consideration. According to the numerical results, the SPAR buoy motions are slightly increased by the wave group, while the heave motion is significantly amplified. Both the aerodynamic performance and the mooring tension are also influenced by the wave group. Furthermore, the low-frequency resonant response could be more easily excited by the wave group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.