Abstract

The attitude and structural vibration of tethered solar power satellite were studied considering solar radiation pressure. Firstly, the simplified model of tethered solar power satellite was established. The solar panel was modeled as an Euler-Bernoulli Beam, the bus was modeled as a particle, and the tethers were modeled as massless springs. The equations of motion were derived based on absolute nodal coordinate formulation and Hamilton’s principle. Then, Symplectic Runge-Kutta method was adopted to solve the differential equations. The proposed model and numerical algorithm were validated through a numerical example. Finally, numerical simulations were carried out. Simulation results showed that solar radiation pressure as well as structural vibration cause small fluctuation of the attitude angle. Moreover, the effect of solar radiation pressure on structural vibration can be neglected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.