Abstract
Development of an annular finite element, for the linear elastic analysis of sandwich shells, is reported here. The derivation of stiffness and mass matrices is based on improved shell theory which takes into account the effects of rotary inertia and transverse shear deformation. Flexural rigidity of the faces is included in the formulation. The core of the sandwich shell is assumed to be incompressible in the radial direction. Numerical examples of spherical sandwich shells with two types of boundary conditions—(i) fixed and (ii) pinned along the outer periphery—have been presented. The results are generated for displacements and frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Pressure Vessel Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.