Abstract
In this study the vibration system is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. Also, the equation of motion is derived applying a modeling method that employs hybrid deformation variables. The influences of the rotating angular velocity and the velocity of fluid flow on the dynamic behavior of a cantilever pipe are studied by the numerical method. The effects of a tip mass on the dynamic behavior of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the dynamic behavior of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe and a tip mass in both axial direction and lateral direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.