Abstract

The idea of transferring vital drugs through nanotubes in the human body has attracted the attention of many researchers in the field of nanomedicine. Accordingly, the main objective of this article is to investigate the forced vibration response of two hybrid smart carbon nanotubes connected using springs and conveying a nanofluid, with each one including either a piezoelectric or electrorheological fluid layer. To this aim, a slip boundary condition along with a Knudsen number is employed to address the vibration behavior of smart hybrid sandwich nanotubes acted upon by a moving sinusoidal load, while equations are derived with the aid of the Timoshenko beam model and nonlocal strain gradient theory. The former theory is complemented with hardening and softening material effects which can greatly enhance the precision of the results. Furthermore, Hamilton’s principle is implemented to obtain the equations of motion. Regarding the time response of the structure, a combination of modal analysis and the Laplace transform is applied. The accuracy of the developed procedure is verified through a set of comparisons of static deflection (as a result of a point load) and vibration frequencies. In addition, the impact of a number of parameters ranging from nanoparticle velocity to material length scale is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call