Abstract

The station keeping and the rotational oscillation control are important to secure the dynamic stability of spar-type floating offshore wind turbine subject to irregular wind and wave excitations. Those are usually evaluated in terms of rigid body dynamic response of floating substructure which supports whole offshore wind turbine. In this context, this paper addresses the numerical investigation of dynamic response of a spar-type hollow cylindrical floating substructure moored by three catenary cables to irregular wave excitation. The upper part of wind turbine above wind tower is simplified as a lumped mass and the incompressible irregular potential wave flow is generated according to the Pierson–Moskowitz spectrum. The wave-floating substructure and wave-mooring cable interactions are simulated by coupling BEM and FEM in the staggered iterative manner. Through the numerical experiments, the time- and frequency-responses of a rigid spar-type hollow cylindrical floating substructure and the tension of mooring cables are investigated with respect to the total length and the connection position of mooring cables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.