Abstract
This article presents the forced vibration of composite beams reinforced by single-walled carbon nanotubes (SWCNTs) and subjected to a moving mass. Considering the distribution of carbon nanotubes such as uniform (UD-CNT), functionally graded Λ (FGΛ-CNT) and X (FGX-CNT), three different beams are studied. Based on a third-order shear deformation theory (TSDT), the motion equations of the beams are derived using Hamilton's principle. Including mass interaction forces, the motion equations are transformed into a finite element equation in which a two-node beam element with eight degrees of freedom is utilized. To improve the efficiency of the beam element, the transverse shear rotation is employed as an independent variable in the derivation of the beam element. The vibration characteristics, including the dynamic magnification factors and the time histories for mid-span deflections are computed by using the Newmark method. Numerical result reveal that the vibration of the beams is clearly influenced of the CNT reinforcement, and the dynamic magnification is significantly decreased by increasing the CNT volume fraction. It is also shown that the FGX-CNT beam is the best in dynamic resistance in terms of the lowest dynamic deflection and dynamic magnification factors. The effects of the total volume fraction and the moving load velocity on the dynamic behaviour of the functionally graded carbon nanotube reinforced composites (FG-CNTRC) beams are examined in detail and highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.