Abstract

In this thesis, the dynamic response of concrete rectangular liquid storage tanks is investigated. In previous studies, the tank wall has been assumed as rigid in the calculation of hydrodynamic pressures. The effect of flexibility of tank wall is considered in this study. The analytical solutions for both impulsive pressure and convective pressure induced by both horizontal and vertical ground motions are presented. A 2-D coupled analysis model of tank wall is proposed. The hydrodynamic pressures are considered as external forces applied on the tank wall. Through a technique called the sequential method, the two fields of fluid and structure are coupled. The time-history analysis using the mode superposition method and the direct step-by-step integration method are carried out. Two rectangular tanks are analyzed. From the comparison of the results obtained from the proposed model with those proposed by other researchers, such as added mass model based on the rigid wall boundary condition, it shows that the lumped mass approach overestimates the base shear and wall displacement. The effect of wall flexibility on displacements, base shears and base moments are also discussed. A combination of the added mass method and the sequential method is used to study liquid storage tanks subjected to the vertical ground motion. It is found that the effect of the vertical acceleration should be considered in dynamic analysis of rectangular tanks. It is concluded that the total response of the structures should be based on the sum of the response under both horizontal and vertical components of ground motion.

Highlights

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.